Как самолет поворачивает и тормозит в воздухе и при чем здесь крыло?

После того, как самолет отрывается от земли, он теряет все привычные нашему взгляду точки опоры и ему приходится полагаться только на свою скорость, за счет которой давление воздуха под крылом удается поддерживать выше, чем над ним. В таких условиях все привычные способы маневрирования оказываются бесполезными, да и степеней свободы у самолета гораздо больше, нежели прямо, влево, вправо и назад. Как ему удается осуществлять маневрирование в воздухе, при чем с высокой точностью, ну и самое интересное: как можно разогнаться в воздухе довольно ясно, для этого есть несколько реактивных или винтовых двигателей, а как затормозить, особенно если самолет идет на снижение и при чем здесь крыло? На самом деле это не такая простая задача, учитывая что во время снижения самолета его скорость постоянно возрастет за счет действия ускорения свободного падения. Об этом поговорим в данном материале, доступно и просто. Приятного чтения!

Механизация крыла - закрылки + спойлеры – Механизация крыла - закрылки + спойлеры – Движение24
Механизация крыла закрылки + спойлеры

Подъемная сила

На самом деле всем известно, что самолет удерживается в воздухе благодаря крыльям. За счет специального профиля и большой площади, при увеличении скорости самолета поток воздуха «изгибается», встречая сопротивление наклоненного крыла, и давление воздуха под ним значительно возрастает, а над ним остается прежним, за счет чего самолет взмывает ввысь, курсируя по воздуху словно над водной гладью. Эта разница давлений и называется подъемной силой, которая зависит от угла атаки (непосредственный угол наклона плоскости крыла навстречу воздушному потоку) и скорости потока воздуха (или наоборот — всякое движение относительно, мы это помним).

движение воздуха вокруг крыла – crylo-dvizhenie24-ru – Движение24

Подытожим: подъемной силой можно манипулировать изменяя два параметра: скорость и угол атаки. Подъемная сила названа таковой потому, что она направлена вверх от земли в небо, но на самом деле отклоняя любую плоскость в воздушном потоке можно создать разницу давлений между сторонами этой плоскости, соответственно будет возникать некая сила, направленная от стороны с большим давлением в сторону меньшего, причем плоскость может располагаться в любом положении, главное чтобы она находилась в набегающим воздушном потоке.

Плоскости крыла

Самолет имеет много степеней свободы, и за самые важные отвечает крыло: набор высоты и снижение, повороты, торможение, повышение подъемной силы при снижении скорости перед посадкой. Ну с высотой все понятно — в зависимости от угла атаки (который регулирует «хвостовое оперение» — руль высоты, наклоняя самолет либо носом вверх, либо вниз) подъемная сила либо возрастает, либо наоборот падает, а если она принимает отрицательные значения, то есть давление над крылом становится выше чем под ним, самолет снижается. А как быть с поворотами и торможением?

Механизация крыла – Механизация крыла – Движение24
Механизация крыла

Для этих целей служат другие управляющие плоскости, которые носят названия: элероны, спойлеры, интерцепторы, закрылки и предкрылки. Для того, чтобы самолет осуществил поворот в какую-либо сторону пилот отклоняет штурвал словно руль автомобиля, и на крыльях в соответствующие стороны отклоняются элероны.

Элероны: повороты вправо-влево

Элероны на каждом крыле работают одновременно в противоположных направлениях: если на правом элерон отклоняется вверх, то на левом элерон отклоняется вниз, на одинаковое количество градусов. В этом случае на правом элерон станет «препятствием» воздушному потоку над крылом, точнее над самым его краем, значит давление над элероном будет возрастать и появится сила, толкающая край крыла вниз. Поскольку на противоположной стороне в данный момент будет происходить тот же процесс только в обратном направлении, получится вращающий момент: законцовка одного крыла движется вниз, а другого вверх, и самолет наклоняется. Из-за профиля в момент возникновения крена самолет начинает поворачивать в сторону крыла, направленного вниз к земле.

Механизация крыла – Механизация крыла – Движение24
Механизация крыла

Интерцепторы и спойлеры: торможение самолета

Довольно часто пилотам приходится выдерживать жесткий скоростной режим, например во время кружения в зоне посадки крупных аэропортов, когда авиадиспетчер директивно каждому воздушному судну в зоне его ответственности выдает указания: на какой высоте лететь и с какой скоростью.

Если во время горизонтального полета выдерживать скорость не сложно так как она напрямую зависит от заданной мощности силовых установок, то во время снижения скорость как правило возрастает, а если снизиться нужно быстро (такое бывает в зажатых зонах посадки крупных аэропортов) то вертикальная скорость так или иначе перейдет в горизонтальную, и возникает потребность в воздушном тормозе.

Механизация крыла – Механизация крыла – Движение24
Механизация крыла

Роль воздушного тормоза в небе на крупных воздушных судах играют интерцепторы — отклоняемые только вверх плоскости, расположенные на верхней стороне крыла. Открываясь на заданный угол интерцепторы создают сопротивление воздушному потоку, и, как мы уже знаем, возникает зона повышения давления воздуха и вместе с ней сила, направленная вниз и в противоположном направлении. Поскольку площадь крыла намного больше площади интерцепторов вектор силы, направленный вниз, на высокой скорости не играет особой роли, зато тормозящий эффект проявляется неплохо.

Сразу после посадки как правило открываются на максимальный угол все панели интерцепторов и дополнительные панели, которые называют спойлерами. Знакомое жителям интернета название — спойлер, в авиации так и обозначает — воздушный тормоз. Его действие во время посадки самолета на взлетную полосу, когда скорость самолета небольшая, связано как раз с прижимной силой — крыло прижимается к земле препятствуя эффекту подскока (на профессиональном языке есть термин — «козление»).

Закрылки: значительное повышение несущей способности крыла

Взлетная скорость крупного гражданского самолета составляет более 225 км/ч, но стоит учитывать, что угол атаки на взлете высок и двигатели работают в самом мощном взлетном режиме, придавая воздушному судну постоянное ускорение. Стабильный полет выполняется на скоростях, близких к 300 — 350 км/ч. Посадка на такой высокой скорости является очень рискованной, так что авиаконструкторам пришлось идти на всякие хитрости.

Механизация крыла - выпущенные закрылки вид с земли снизу – Механизация крыла - выпущенные закрылки вид с земли снизу – Движение24
Механизация крыла выпущенные закрылки вид с земли снизу

Одной из хитростей стало изобретение закрылков — это самые масштабные плоскости, которые продолжают крыло под значительным углом, и сильно увеличивающие его площадь, а значит и подъемную силу. Поскольку закрылки продолжают крыло под значительным углом, они создают большое сопротивление воздушному потоку, так что двигателям приходится работать на более мощных режимах при их выпуске. Та сила, которая возникает от сопротивления воздушному потоку, направлена вверх, а значит увеличенная тяга двигателей приводит не к разгону самолета, а к увеличению подъемной силы.

Закрылки позволяют самолету уверенно держаться «на крыле» на меньших скоростях, но с увеличенной тягой двигателей. Таким образом, с полностью выпущенными закрылками, современный гражданский самолет может уменьшить скорость посадки с 300 до 180 км/ч.

Предкрылки: предотвращают «срыв потока»

Посмотрите на схему «оперения» самолета, предкрылки расположены на переднем крае крыла по всей длине.

Оперение самолета - плоскости управления – Оперение самолета - плоскости управления – Движение24
Оперение самолета плоскости управления

Предкрылки отклоняются чуть вперед и вниз, таким образом изменяя геометрию крыла. Все дело в том, что во время взлета и посадки крыло находится на больших «углах атаки». Чтобы не произошел срыв потока, когда передний его край будет создавать слишком сильное сопротивление воздушному потоку, приводя к падению скорости, а вместе с ней и подъемной силы. Выпущенные предкрылки продлевают крыло и занижают его передний край, а на больших углах атаки предкрылок не будет оказывать сильное сопротивление воздушному потоку, позволяя ему «пробегать» над крылом.